Engineering Title: Computer Security.
Semester: 06.
TU Title:
Subject Title: Advanced Cryptography.
Credits: 6.
Coefficient: 4.
Teaching Objectives: Introduce the student to the study of cryptosystems based on algebraic problems or
error-correcting code problems.
Recommended Prior Knowledge: Some algebra concepts.
Course Content:
1. Introduction.
a- Security needs.
b- Symmetric Crypto-Systems, Asymmetric Crypto-Systems.
c- Hash Functions.
d- Electronic Signature.
e- New Trends in Cryptography.
f- Cryptanalysis.
2. Encryption, security.
a- “One-way” function.
b- The RSA method and factorization of integers.
c- Discrete logarithm and El Gamel cryptosystem.
d- The Knapsack problem.
e- Error correcting codes and Mc Elièce cryptosystem.
f- Elliptic curves, cryptosystems.
g- Secret Sharing.
h- Image encryption.
i- Copyright protection.
3. Authentication.
a- Protocols, Principles.
b- Authentication techniques, digital signature.
c- Signature using public keys.
d- File security.
e- Algorithms, examples.
Evaluation Mode: Continuous Evaluation, and Exam.
References:
1. Ireland & Rosen, A Classical Introduction to Modern Number Theory, Springer.
2. Koblitz, A Course in Number Theory and Cryptography, Springer, 1994.
3. Blake, Seroussi et Smart, Elliptic Curves in Cryptography, Springer.
4. Koblitz, Algebraic Aspects of Cryptography, Springer.Establishment: Engineering Title: Computer Security (CS).
Academic Year: 2024-2025 Page |
- Enseignant: azaidi Abdelhamid Zaidi
compile est destiné aux troisième années ING. Le but est de réaliser un mini-compilateur et de l'étudier formellement, en effectuant les différentes phases de la compilation à savoir l'analyse lexicale et l'analyse syntaxico-sémantique. Ainsi que les traitements parallèles concernant la gestion de la table des symboles ainsi que le traitement des différentes erreurs.
- Enseignant: hbelhadi hbelhadi