<h1>Course Presentation</h1>
<p>The Technical English and Terminology (TET) course is primarily aimed at training Master's students in mastering professional and scientific English applied to the field of electrical engineering.</p>
<p>In a world where English has become the reference language in technical documentation, scientific publications, and international industrial environments, this course aims to provide students with the linguistic tools necessary to understand, write, and communicate effectively in their area of expertise.</p>
<p>The course content is structured around seven thematic chapters, covering both the vocabulary specific to electrical components, power systems, renewable energy, industrial maintenance, and the mastery of grammatical forms specific to scientific English (passive voice, tenses, formal writing...).</p>
<h1>Content</h1>
<p>This course is divided into seven chapters:</p>
<h3>Chapter 1: Electrical Engineering - Key Technical Terms</h3>
<ul>
<li>Four language skills: listening, speaking, reading, writing.</li>
<li>Characteristics of scientific writing: clarity, objectivity, structure, technical vocabulary.</li>
<li>Overview of electrical engineering: role of engineers, basic components, etc.</li>
<li>Circuit components: voltage (V), current (I), resistance (R), power (P).</li>
<li>Introduction to electromagnetism, electromagnetic induction.</li>
<li>Specific vocabulary: diodes, transistors, amplifiers, integrated circuits.</li>
</ul>
<h3>Chapter 2: Passive versus Active - Impersonal versus Personal Forms</h3>
<ul>
<li>Most used tenses in scientific writing.</li>
<li>Passive and active voice in technical contexts.</li>
<li>Sentence correction and rewriting in scientific texts.</li>
<li>Exercises: active/passive transformation, tense recognition.</li>
</ul>
<h3>Chapter 3: Technical Terms of Electrical Machines</h3>
<ul>
<li>Technical terms used in electrical machines.</li>
<li>Different types of electrical machines.</li>
<li>Application of electrical machines in various fields.</li>
</ul>
<h3>Chapter 4: Technical Terms of Power Electronics</h3>
<ul>
<li>Technical terms used in power electronics.</li>
<li>Different types of power electronics components.</li>
<li>Application of power electronics for optimal energy use.</li>
</ul>
<h3>Chapter 5: Technical Terms of Power Systems</h3>
<ul>
<li>Production, transmission, and distribution of electrical energy.</li>
<li>Transformers, substations, high voltage lines.</li>
<li>Stability elements of power systems (transient, voltage, frequency).</li>
<li>Introduction to smart grids.</li>
<li>Power quality: harmonics, voltage dips/sags, flickers.</li>
<li>Transmission line faults: short circuits, grounding, etc.</li>
<li>Protection equipment: circuit breakers, relays, surge arresters.</li>
<li>Advanced terminology on network stability and fault diagnostics.</li>
</ul>
<h3>Chapter 6: Technical Terms of Renewable Energy in Power Engineering</h3>
<ul>
<li>Renewable energy sources: solar, wind, hydro, biomass, geothermal.</li>
<li>Photovoltaic systems: solar panels, inverters, MPPT.</li>
<li>Technical challenges related to grid integration.</li>
<li>Vocabulary related to conversion, storage, and energy control.</li>
</ul>
<h3>Chapter 7: Maintenance in Electrical Engineering</h3>
<ul>
<li>Types of maintenance: corrective, preventive, predictive, proactive.</li>
<li>Key indicators: MTTF, MTBF, MTTR.</li>
<li>Concepts like RCM, TPM, CBM.</li>
<li>Vocabulary of asset management, planning, and maintenance optimization.</li>
</ul>
<h1>Learning Objectives</h1>
<p>The overall objective of this course is to enable students to master technical English applied to electrical engineering, to communicate effectively in academic, industrial, or research contexts.</p>
<h3>1. Knowledge:</h3>
<ul>
<li>Know the technical vocabulary related to electrical engineering, power systems, electronics, and renewable energies.</li>
<li>Understand the structure and conventions of scientific writing (style, grammar, verb tenses, passive voice...).</li>
<li>Assimilate terms and concepts related to maintenance, network faults, and energy production and transmission.</li>
</ul>
<h3>2. Practical Skills:</h3>
<ul>
<li>Read and understand technical documents in English (reports, datasheets, articles, manuals...).</li>
<li>Take notes and summarize information from scientific texts or videos.</li>
<li>Orally present a phenomenon, device, or system in technical English.</li>
<li>Write technical texts such as: professional emails, CVs, cover letters, scientific summaries.</li>
<li>Correctly use grammatical structures adapted to technical English (passive voice, logical connectors...).</li>
</ul>
<h3>3. Professional Attitudes:</h3>
<ul>
<li>Develop autonomy in learning English by researching vocabulary and exposure to authentic sources.</li>
<li>Express oneself confidently in an English-speaking academic or professional environment.</li>
<li>Work in teams on oral presentations and written projects in English.</li>
<li>Respect the norms of formal communication in technical and scientific exchanges.</li>
</ul>
<h1>Assessment Methods</h1>
<h3>1. Final Exam (60% of the final grade)</h3>
<p>The final exam will take place at the end of the semester and will cover all topics addressed. It will include:</p>
<ul>
<li>Reading comprehension: analysis of a technical text + questions.</li>
<li>Written production: writing a technical summary or a professional email (CV or cover letter).</li>
<li>Grammar: exercises on verb tenses, passive voice, logical connectors.</li>
<li>Technical vocabulary: definitions, translation, usage in context.</li>
<li>Listening comprehension: short video extract + summary or multiple-choice questions.</li>
</ul>
<h3>2. Continuous Assessment (40% of the final grade)</h3>
<p>This assessment encourages consistency and engagement throughout the semester:</p>
<ul>
<li>Midterm written test (10 points): vocabulary, grammar, comprehension.</li>
<li>Active participation (5 points): attendance, involvement in discussions, quality of oral responses.</li>
<li>Written assignments (5 points): text summaries, vocabulary sheets.</li>
<li>Group oral presentation (optional depending on time availability): technical presentation in English.</li>
</ul>
<h1>Teaching and Learning Activities</h1>
<p>The proposed teaching activities aim to actively involve students in their learning, through varied, contextualized, and progressive situations.</p>
<h3>1. Interactive Lectures:</h3>
<ul>
<li>Presentation of linguistic, grammatical, and terminological notions.</li>
<li>Guided analysis of scientific texts.</li>
<li>Demonstrations of technical writing structures (summaries, letters, CVs...).</li>
</ul>
<h3>2. Understanding Technical Documents:</h3>
<ul>
<li><strong>Written:</strong> Reading of specialized texts (articles, technical sheets, manuals), followed by comprehension exercises.</li>
<li><strong>Audio/Video:</strong> Listening to technical videos (documentary excerpts, presentations, tutorials), note-taking, questions, and summaries.</li>
</ul>
<h3>3. Oral Expression Activities:</h3>
<ul>
<li>Individual or group presentations of electrotechnical concepts.</li>
<li>Role plays (interview simulation, professional call).</li>
<li>Debates on topics related to energy or new technologies.</li>
</ul>
<h3>4. Written Expression Activities:</h3>
<ul>
<li>Writing professional messages: emails, cover letters, CVs.</li>
<li>Summarizing technical texts in English.</li>
<li>Creating personal vocabulary sheets.</li>
</ul>
<h3>5. Progressive Vocabulary Learning:</h3>
<ul>
<li>Each session introduces a list of 10 technical words translated into English, French, and Arabic, with usage examples.</li>
<li>Regular exercises for memorization, contextualization, and rephrasing.</li>
</ul>
<h3>6. Application Exercises:</h3>
<ul>
<li>Corrected exercises in class: grammar, structure, use of passive voice, verb tenses.</li>
<li>Vocabulary and comprehension quizzes.</li>
<li>Collective correction and linguistic justification.</li>
</ul>
<h3>7. Group Work and Collaboration:</h3>
<ul>
<li>Collaborative work on presentations.</li>
<li>Peer review of written productions.</li>
<li>Sharing glossaries and terminological resources.</li>
</ul>
<h1>Pedagogical Alignment</h1>
<p>The pedagogical alignment of the course ensures coherence between the intended learning outcomes, teaching methods, learning activities, and assessment modes. It is based on the three fundamental pillars of competence: knowledge, skills, and attitudes.</p>
<h3>1. Knowledge (Theoretical):</h3>
<ul>
<li>Interactive lectures.</li>
<li>Guided reading of technical texts.</li>
<li>Authentic audiovisual materials.</li>
<li><strong>Assessment:</strong> MCQs, grammar and vocabulary tests, comprehension questions (written/oral).</li>
</ul>
<h3>2. Practical Skills:</h3>
<ul>
<li>Reading, understanding, and summarizing technical documents.</li>
<li>Producing professional texts: CVs, letters, emails, summaries.</li>
<li>Oral presentation of technical subjects with clarity.</li>
<li><strong>Assessment:</strong> written assignments, oral presentations, corrected productions.</li>
</ul>
<h3>3. Professional Attitudes:</h3>
<ul>
<li>Vocabulary learning autonomy.</li>
<li>Group collaboration (presentations, peer reviews).</li>
<li>Respect for instructions and deadlines.</li>
<li><strong>Assessment:</strong> active participation, punctuality, teamwork.</li>
</ul>
<h1>Course Organization</h1>
<p>The course is organized to encourage active student engagement, progressive language acquisition, and direct application in professional situations related to electrical engineering.</p>
<h3>1. Weekly Organization:</h3>
<ul>
<li>Session duration: 1h30 per week (22h30 total).</li>
<li>Typical session structure:</li>
<ol>
<li>Presentation of a technical theme (e.g., transformers, renewable energy...)</li>
<li>Introduction of 10 technical words in English/French/Arabic.</li>
<li>Main activity: reading, listening, summarizing, writing, or speaking.</li>
<li>Group exchange and guided correction.</li>
<li>Summary + optional homework.</li>
</ol>
</ul>
<h3>2. Teacher’s Role:</h3>
<ul>
<li>Provide authentic technical resources.</li>
<li>Lead discussions and professional simulations.</li>
<li>Correct written and oral productions.</li>
<li>Offer individual guidance if needed.</li>
</ul>
<h3>3. Student Engagement:</h3>
<ul>
<li>Mandatory attendance and punctuality.</li>
<li>Note-taking and personal glossary creation.</li>
<li>Completion of written and oral exercises.</li>
<li>Active participation in discussions and simulations.</li>
</ul>
<h3>4. Teaching Tools:</h3>
<ul>
<li>Printed specialized texts.</li>
<li>Technical videos in English.</li>
<li>Multilingual vocabulary tables.</li>
<li>Interactive exercises (paper or digital).</li>
</ul>
<h3>5. Communication:</h3>
<ul>
<li>All questions should be asked during class or via a dedicated forum (if available).</li>
<li>Emails will be answered within 48 hours, except in exceptional cases.</li>
</ul>
- Dr. Soufiane BELAGOUNE: sbelagoune sbelagoune
Le cours est didé pour les étudiants en Master Automatique ( AII,AS et AIP).
Les objectifs de ce module sont:
Vous serez capable de concevoir un programme des entrainements électriques à partir de zéro,
Vous découvrirez les convertisseurs statiques , leur utilisations dans les machines électriques, leur domaine d'utilisation et les logiciels utilisés pour les différentes simulations,
Vous pourrez comprendre le rôle des convertisseurs statiques dans machines électriques et actionneurs,
Vous pourrez Etudier les différentes associations convertisseurs statiques aux machines électriques tournantes afin de contrôler le couple et la et la vitesse d’un système,
Vous pourrez programmer les différents variateurs de vitesse et démarreurs progressifs,
Vous vous familiariserez avec l’ensemble convertisseurs statiques- machines électriques .
- Enseignant: bouchafa farid, ensei BOUCHAFAA FARID
Anglais Technique for master 1, named: Automatisation Industrie et Process (AIP) faculty of Electrical Engineering, Department of Automatique.
course code is UET 2.1
Crédits : 2
Coefficients : 2
- Enseignant: smadi MADI Sarah
Ce cours est destiné aux étudiants M2 Master Réseaux et Télécommunications (RT). L’objectif de ce cours est de découvrir le principe de base d’un réseau de capteurs sans fil (RCSF ou en Anglais WSN pour Wireless Sensor Network) basé sur un grand nombre de nœuds qui sont des micro-capteurs capables de récolter et de transmettre des données environnementales d'une manière autonome.
Chapitre 1. Transmission de données dans les RCSF (WSN)
Rappels sur les réseaux sans fil utilisés par les RCSF.
Caractéristiques, applications et Architectures des RCF. Exemples de capteurs sans fil. Exemples de protocoles utilisés dans les RCSF. Les limites et inconvénients des RCF.
Chapitre 2. Système d'exploitation pour Réseaux de capteurs sans fils
Introduction. Contrainte matérielle d’un nœud capteur. Propriété d’un système d’exploitation dédié pour nœud capteur sans fil. Solution : TinyOS. Aperçue générale sur TinyOS.
Chapitre 3. Protocoles de routage dans les RCSF
Introduction, Taxonomie des protocoles de routage dans les RCSF, Routage pour la gestion de l’énergie dans les RCSF.
Chapitre 4. Déploiement des RCSF
Introduction. Facteurs et contraintes pertinents dans le choix d’une architecture d’un RCSF. Région d’intérêt, Exemples d’application
Chapitre 5. La sécurité dans les RCSF
Vulnérabilité des RCSF. Taxonomie des menaces et des solutions. Gestion de clés. Sécurité du routage. Sécurité de l'agrégation. Exemples d'applications.
- Enseignant: merazka fatiha merazka fatiha